On aq-deformation of the discrete Painlevé I equation andq-orthogonal polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a q-Deformation of the Discrete Painlevé I equation and q-orthogonal Polynomials

I present a q-analog of the discrete Painlevé I equation, and a special realization of it in terms of q-orthogonal polynomials.

متن کامل

The Discrete Painlevé I Hierarchy

The discrete Painlevé I equation (dPI) is an integrable difference equation which has the classical first Painlevé equation (PI) as a continuum limit. dPI is believed to be integrable because it is the discrete isomonodromy condition for an associated (single-valued) linear problem. In this paper, we derive higher-order difference equations as isomonodromy conditions that are associated to the ...

متن کامل

On Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation

1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...

متن کامل

On Discrete Orthogonal Polynomials of Several Variables

Let V be a set of points in R. Define a linear functional L on the space of polynomials, Lf = ∑ x∈V f(x)ρ(x), where ρ is a nonzero function on V . The structure of discrete orthogonal polynomials of several variables with respect to the bilinear form 〈f, g〉 = L(fg) is studied. For a given V , the subspace of polynomials that will generate orthogonal polynomials on V is identified. One result sh...

متن کامل

Discrete entropies of orthogonal polynomials

Let pn, n ∈ N, be the nth orthonormal polynomial on R, whose zeros are λ j , j = 1, . . . , n. Then for each j = 1, . . . , n, ~ Ψj def = ( Ψ1j , . . . ,Ψ 2 nj ) with Ψij = p 2 i−1(λ (n) j ) ( n−1 ∑ k=0 pk(λ (n) j ) ) −1 , i = 1, . . . , n, defines a discrete probability distribution. The Shannon entropy of the sequence {pn} is consequently defined as Sn,j def = − n ∑ i=1 Ψij log ( Ψij ) . In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 1994

ISSN: 0377-9017,1573-0530

DOI: 10.1007/bf00751068